OUTside-IN and INside-OUT

Maize plants with improved growth characteristics in the greenhouse are tested in field trials. Unfortunately, the knowledge gained in the laboratory cannot easily be transferred to the field. One of the reasons for the low success rate in translating laboratory findings into field applications is the observation that laboratory-bred plants have very pronounced phenotypic and molecular differences compared to the same genotypes grown in the field.

From cell to canopy

To facilitate the different irrigation regimes required for drought studies and to increase the resolution and sensitivity of phenotyping, we use the automated irrigation and imaging platforms for plant phenotyping, called Phenovision. The Phenovision platform is equipped with three camera systems that enable the three-dimensional reconstruction of plants, the measurement of growth-related phenotypic characteristics, water consumption and plant physiology.

Research question

The size control of multicellular organisms is an old biological question that has always fascinated scientists. Growth, per definition is a dynamic process and it becomes more and more evident that its regulation is highly coordinated in time and space. Our long-term goal is therefore to decipher the dynamics of the molecular pathways and networks that determine plant organ size, using maize as a model system.

Villers Timothy

Villers Timothy - Predoctoral fellow
Joined the group in 2019

Timothy has a keen interest in space and biology. After having worked as a student in the Research and Development department of Colruyt Group on Vertical farming technology and hydroponics, his ambition to get further into academics grew. In 2020, he graduated as Master of Science in Biology at Ghent University. Following his master thesis, which focused on the a growth-promoting cytochrome P450 78A, he obtained an FWO-grant for a project that builds further on the same topic. His project focuses on unraveling the reaction catalyzed by CYP78A and clarifying its regulatory network, with the aim to acquire knowledge that can lead to the development of applications with beneficial effects on many agricultural crops in a non-GMO manner (e.g. a biostimulant). The project will function as a stepping stone for his future goals, which involve conducting biological research in the context of space.